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The governing di!erential equations for out-of-plane vibrations of curved non-uniform
beams of constant radius are derived. Two physical parameters are introduced to simplify
the analysis. The explicit relations between the #exural displacement, its "rst three order
derivatives and the torsional displacement are derived. With these explicit relations, the two
coupled governing characteristic di!erential equations can be decoupled and reduced to
a sixth order ordinary di!erential equation with variable coe$cients in the torsional
displacement. It is shown that if the material and geometric properties of the beam are in
arbitrary polynomial forms of spatial variable, then exact solutions for the out-of-plane
vibrations of the beam can be obtained. The derived explicit relations can also be used to
reduce the di$culty in experimental measurements. Finally, the in#uence of taper ratio,
center angle and arc length on the "rst two natural frequencies of the beams is illustrated.

( 2000 Academic Press
1. INTRODUCTION

Curved beam structures have been used in many mechanical, aerospace and civil
engineering applications such as spring design, curved wires in missile-guidance #oated
gyroscopes, curved girder bridges, brake shoes within drum brakes, tire dynamics, sti!eners
in aircraft structures and turbo-machinery blades. It can also be used as a simpli"ed model
of a shell structure. Research in this area can be traced back to the 19th century [1, 2]. An
interesting review can be found in the review papers by Markus and Nanasi [3], Laura and
Maurizi [4], Chidamparam and Leissa [5] and Auciello and De Rosa [6].

In general, the out-of-plane and the in-plane vibrations of a general plane curved beam
are coupled. However, based on the Bernoulli*Euler hypothesis, if the cross-section of the
curved beam is uniform and doubly symmetric, then the out-of-plane and the in-plane
vibrations are independent [7].

Out-of-plane vibrations of curved beams have been studied by many investigators [3}6].
The associated governing di!erential equations are two coupled di!erential equations in
terms of the out-of-plane #exural displacement and the torsional displacement. It is known
that if the beam is uniform, then the coe$cients of the di!erential equations are constants.
After some simple arithmetic operations, the two coupled di!erential equations can be
reduced into one sixth order ordinary di!erential equation [2, 7]. The problem was solved
by di!erent analytical methods and the exact solutions can be obtained [1, 2, 7, 8].
However, it is not the case for the non-uniform beams. Due to the complexity in the
coe$cients of the governing di!erential equations, the two coupled di!erential equations
have never been reduced into one sixth order ordinary di!erential equation before.
Exact solutions for the curved non-uniform beam problem are only found in the work by
022-460X/00/480443#16 $35.00/0 ( 2000 Academic Press
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Suzuki et al. [9], who gave an exact series solution to the beams with the same boundary
conditions at both the ends. Nevertheless, their method has di$culty in handing the
problems with other kinds of boundary conditions. Hence, curved non-uniform beam
problems were studied mainly by approximate methods such as the Rayleigh}Ritz method
[10], the lumped mass approach [11], the transfer matrix method [12], the "nite element
method and the discrete Green function method [13].

In this paper, one considers a non-uniform beam with doubly symmetric cross-section. It
is assumed that the thickness of the beam is small in comparison with the radius of the
beam. Without considering the shear deformation, the rotary inertia and the warping
e!ects, the governing di!erential equations for the out-of-plane vibrations of curved
non-uniform beams of constant radius are derived via the Hamilton principle. By
introducing two physical parameters, the analysis is simpli"ed and it is found that the
torsional displacement and its derivative can be explicitly expressed in terms of the #exural
displacement. With these explicit relations, the two coupled governing characteristic
di!erential equations are decoupled and reduced to one sixth order ordinary di!erential
equation with variable coe$cients in the torsional displacement. It can be shown that if the
material and geometric properties of the beam are in arbitrary polynomial forms of spatial
variable, exact solutions for the out-of-plane vibrations of non-niform curved beams can be
obtained. It is worthwhile to mention that by employing the explicit relations, one only has
to measure the torsional displacement instead of measuring the torsional and the #exural
displacements simultaneously in the experimental study of the cruved beam. Hence, it
greatly reduces the di$culty in experimental measurement. Finally, the in#uence of taper
ratio, center angle and arc length on the "rst two natural frequencies of the beams is studied.

2. COUPLED GOVERNING DIFFERENTIAL EQUATIONS

Consider the out-of-plane and in-plane vibrations of a non-uniform curved beam of
radius R, as shown in Figure 1. If the thickness of the beam is small in comparison with the
radius of the beam, without considering the shear deformation, the rotary inertia and
the warping e!ects, the displacement "elds of the curved beam in cylindrical co-ordinates
are [5]
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Figure 1. Geometry and co-ordinate system of a curved non-uniform beam with constant radius.
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The potential energy and the kinetic energy of the beam are
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respectively. E (s) is the Young's modulus, G (s) is the shear modulus, A (s) is the cross-
sectional area, ¸ is the length of the neutral axis and o (s) is the mass per unit volume of the
beam. I

r
(s) and I

z
(s) denote the area moments of inertia of the beam section about the r and
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z axes respectively. Ih (s) is the polar moment of inertia about the h-axis. The terms a
1
&a

2
and d

1
in equation (3) are given in Appendix A.

Via the Hamilton principle, the governing di!erential equations and the associated
boundary conditions for the system can be derived. It can be shown that if the cross-section
of the beam is doubly symmetric about the r and z axes, then the terms a

1
&a

2
will vanish.

As a result, the in-plane and the out-of-plane vibrations of curved non-uniform beams
are independent. This conclusion is consistent with that for the curved uniform beam
theory [7].

The governing di!erential equations for the out-of-plane vibrations are the two coupled
di!erential equations
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where the primes denote di!erentiation with respect to s. When the beam is uniform, then
the governing di!erential equations (5) can be reduced to those of the uniform beam [15].
For time-harmonic vibrations with angular frequency X, one assumes
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(6)

w (s, t)"=(s)eiX t.

Consequently, the two coupled governing characteristic di!erential equations of the beam
are

CEI
rA

1

R
U!=ABD

A
#CGIhA

1

R
U@#

1

R2
=@BD

@
#oAX2="0, (7)

CGIhAU@#
1

R
=@BD

@
!EI

rA
1

R2
U!

1

R
=AB#oIhX2U"0. (8)

The associated boundary conditions are at s"0 and ¸:
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If the beam is clamped at the boundary, then the boundary conditions are="0,=@"0
and U"0. If the beam is free at the boundary, then the other identities in equations (9)}(11)
are speci"ed.
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3. UNCOUPLED GOVERNING DIFFERENTIAL EQUATION IN THE TORSIONAL
ANGLE PARAMETER U

3.1. CURVED NON-UNIFORM BEAMS

To uncouple the governing di!erential equations (7) and (8), one de"nes two physical
parameters
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where ¹U and FzU are the torque per unit arc length and the force per unit arc length in the
z direction, caused by the torsional angle U respectively. Di!erentiating equation (8), it
yields
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is given in Appendix B. Substituting equation (8) into the equation resulting from
di!erentiating equation (14), one obtains
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where a
6

is given in Appendix B. Substituting equations (8), (14) and (15) into equation (7)
leads to
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where a
7

and a
8

are listed in Appendix B. After di!erentiating equation (16) once and
combining it with equation (8) and substituting the results into equations (8), (14) and (15),
one can explicitly express=, =@,=A, =@@@ in terms of U
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and a
9

is given in Appendix B. After substituting equations (17)}(20) into equation (7), one
obtains an uncoupled sixth order ordinary di!erential equation in the torsional angle
parameter U
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where a
10

is given in Appendix B. The boundary conditions (9)}(11) in the torsional angle
parameter U now are
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3.2. CURVED UNIFORM BEAMS

For curved uniform beams,
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Substituting equations (30) and (31) into equation (32), the governing equation can be
written as
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where U(6) indicates the sixth derivative of U with respect to s. Equation (33) is the
uncoupled di!erential equation of a curved uniform beam and is the same as that given by
Lee [16].

3.3. EXACT FUNDAMENTAL SOLUTIONS

The decoupled governing characteristic di!erential equation, in terms of U, for the
out-of-plane vibration of a curved non-uniform beams is a sixth order ordinary di!erential
equation with variable coe$cients in the form of

e
0
(x)

d6>(x)

dx6
#e

1
(s)

d5>(x)

dx5
#2#e

5
(x)

d>(x)

dx
#e

6
(x)>(x)"0, x3(0, 1). (34)

If all of the coe$cients are in the polynomial forms, i.e.,
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, p"0}6, are integers representing the number of terms in the series, then one can

assume the six fundamental solutions of the di!erential equation to be in the form of [17]
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Substituting equations (35) and (36) into equation (34), collecting the coe$cients of like
powers, the following recurrence formula can be obtained:
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With this recurrence formula, one can generate the six exact fundamental solutions of the
governing characteristic di!erential equation. They satisfy the following normalization
condition at the origion of the co-ordinate system.
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where >(5)
i

, i"0}5, indicates the "fth derivative of >
i
with respect to s.

After substituting the homogeneous solution which is a linear combination of these
fundamental solutions into the associated boundary conditions, the frequency equation and
natural frequencies of the beams are obtained, consequently.



OUT-OF-PLANE VIBRATIONS OF CURVED BEAMS 451
4. NUMERICAL RESULTS

To illustrate the previous analysis, the out-of-plane vibrations of curved non-uniform
beams of circular cross-section are studies. The following dimensionless parameters will be
used in the following numerical analysis:
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Here, c
z

is the radius of gyration about the z-axis and h
0

is the center angle.
In Table 1, the "rst out-of-plane natural frequencies of clamped}clamped curved beams

are compared with those given in the existing literature [18]. The comparison shows that
the results are very consistent.
TABLE 1

¹he ,rst out-of-plane natural frequencies of curved uniform beams with clamped}clamped ends

h
0

brh (0)"0)615 brh(0)"1)0 brh(0)"2)0

(deg) R (1) (2) (1) (2) (1) (2)

0 R * 22)373 * 22)373 * 22)373
90 50 * 20)840 * 20)694 * 20)363

180 50 18)379 18)361 18)132 18)128 17)564 17)560
270 50 17)767 17)765 16)877 16)875 15)343 15)342

Note: (1), a2Jkj
n
in Volterra and Morell [18]; (2), cJKh shown in the present paper, where c"¸h/Jbrh (0).



Figure 2. The in#uence of the center angle on the "rst dimensionless natural frequencies JKh of the beams with
various taper ratios (brh(0)"1)5). ¸h values: (a) ¸h"10; (b) ¸h"30.
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In the following, the natural frequencies of linearly tapered curved beams of circular
cross-section with clamped-free ends are studied. The material and geometric properties of
the beams with taper ratio g are m(s*)"(1!gs*)2, bh (s*)"(1!gs*)2 and b

rh
(s*)"b

rh
(0)

(1!gs*)4 respectively.
In Figure 2, the in#uence of the center angle on the "rst dimensionless natural frequency

JKh of the beams with various taper ratios and two di!erent dimensionless arc lengths
¸h"10 and 30 is shown. For the beam with the center angle h

0
being zero, the radius of the

beam is in"nite. It represents a straight beam. The ones in the "gures with cross mark
denote the dimensionless natural frequency of a straight uniform beam and are consistent
with the exact solutions given by Meirovitch [19]. From the "gure, it can be observed that



Figure 3. The in#uence of the center angle on the second dimensionless natural frequencies JKh of the beams
with various taper ratios (brh(0)"1)5). ¸h values: (a) ¸h"10; (b) ¸h"30.
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the "rst natural frequencies of the beams with the same taper ratio incresase as the center
angle is increased. Those of the beams with the same taper ratio increase as the center angle
is increased. However, the in#uence of the center angle on the natural frequencies of the
beams with low taper ratio is more signi"cant than those with high taper ratio.

Figure 3, the in#uence of the center angle h
0

on the second dimensionless natural
frequency of the beams with various taper ratios and two di!erent dimensionless arc lengths
¸h"10 and 30 is shown. It is found that under di!erent dimensionless arc lengths, the
in#uence of the taper ratio and that of the curvature on the second natural frequencies are
quite di!erent and also di!erent from that on the "rst natural frequencies. When ¸h"10,
the second natural frequencies of the beams with the same center angle increase as the taper
ratio is increased. However, the second natural frequencies of the beams with the same



Figure 4. The in#uence of the dimensionless arc length ¸h on the second dimensionless natural frequencies
JKh of the beams with various taper ratios (brh (0)"1)5). h

0
values: (a) h

0
"03; (b) h

0
"603.
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center angle decrease as the taper ratio is increased as ¸h"30. This phenomenon is well
explained in Figure 4 in which the in#uence of the dimensionless arc length on the second

dimensionless natural frequencies JKh of the beams with various taper ratios is illustrated.
It is found that for the beams with di!erent center angles, there exists a transient
dimensionless arc length zone. When ¸h is below this transient zone the second natural
frequencies of the beams will increase as the taper ratio is increased. When ¸h is above the
transient zone the second natural frequencies of the beams will decrease as the taper ratio is
increased.



Figure 5. The in#uence of the taper ratio on the second dimensionless natural frequencies JKh of the beams with
various center angles (brh(0)"1)5). ¸h values: (a) ¸h"10; (b) ¸h"30.
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From Figure 3(a) one can also observe that for the beams with ¸h"10, when the taper
ratio g is zero, the second natural frequencies of the beams increase as the center angle is
increased. Otherwise, when the taper ratio is equal to or greater than 0)2, the second natural
frequencies of the beams decrease as the center angle is increased. For the beams with
¸h"30 and various taper ratios, the second natural frequencies of the beams all decrease as
the center angle is increased. This phenomenon is well illustrated in Figure 5. From Figure
5(a) it can be observed that for the beams with ¸h"10, when the taper ratio g is less than
the critical value g

c
"0)156 the second natural frequencies of the beams increase as the

center angle is increased. Otherwise, the second natural frequencies decrease as the center
angle is increased.
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5. CONCLUSIONS

In this paper, two physical parameters are introduced to simplify the analysis of out-of-
plane vibrations of curved non-uniform beams of constant radius. The explicit relations
between the #exural displacement, its "rst three order derivatives and the torsional
displacement for the out-of-plane vibrations of curved non-uniform beams of constant
radius are established. The two coupled governing characteristic di!erential equations of
the system are thus uncoupled and reduced to a sixth order ordinary di!erential equation
with variable coe$cients in the out-of-plane #exural displacement and the torsional
displacement, respectively. With this development, the exact out-of-plane vibration
solutions of curved non-uniform beams with material and geometric properties in arbitrary
polynomial forms of spatial variable are provided. Numerical analysis shows that the taper
ratio, the center angle and the arc length have signi"cant in#uence on the "rst two natural
frequencies of the beams.
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